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Abstract

Language model is an important component in natural language processing and it con-

tributes most of the performance to its applications such as machine translation, opti-

cal character recognition, and automatic speech recognition. Recently, neural language

model and N-gram model are two popular model and applied widely. Neubig and Dyer

(2016) contributes a framework, MODLMs, which combines the features of these two

language model and achieve a better performance than either single one.

Though there are some existing N-gram language model toolkits in the world, no

one was designed for MODLMs because it requires a complete distribution for each

n-gram history. Therefore, This project was designed to build a queryable language

model for MODLMs. We analyze the requirements of this framework and design the

data structure and query algorithm for it. To improve the query speed, this language

model is built on GPU and based on the first GPU language model (Bogoychev and

Lopez, 2016).
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Chapter 1

Introduction

The two most important days in your life are the day you are born and
the day you find out why.

—-Mark Twain

1.1 Motivation

1.1.1 No Language model for MODLMs

Language model is a pivotal unit in natural language processing such as machine

translation, optical character recognition, automatic speech recognition, and natural

language generation. Its performance affects these applications. Therefore, people are

trying to improve language model so as to improve these kinds of useful applications.

Mixture Of Distribution Language Models (MODLMs) (Neubig and Dyer, 2016), is a

novel framework. It combines the features of the N-gram language and neural language

model to get better results than either single kind of language model.

There are already many existing N-gram Language Model toolkits which are de-

signed to store and query language model such as KenLM (Heafield, 2011), IRSTLM

(Federico et al., 2008), BerkeleyLM (Pauls and Klein, 2011) and Sheffield (Guthrie

and Hepple, 2010), gLM (Bogoychev and Lopez, 2016). However, none of the LMs

mentioned above was designed for MODLMs (Neubig and Dyer, 2016). MODLMs of-

fers a Neural/ngram Hybrid Model performing interpolation on softmax layer, which

require the LM return a complete distribution for reach n-gram history, rather than a

single n-gram parameter to calculate the probability of a sentence. Therefore, existing

LMs are inefficient for MODLMs. The primary purpose of this thesis is to build an

1



2 Chapter 1. Introduction

efficiently queryable N-gram language model, called giLM, for MODLMs frame-
work.

1.1.2 The successful application of GPU

Because N-gram language is usually used to process large vocabularies, the query

speed is often a problem (Heafield, 2013; Spence Green and Manning, 2014). To ad-

dress this problem, massively parallel hardware, general purpose graphics processing

units (GPUs) was used by gLM (Bogoychev and Lopez, 2016), which proved the lan-

guage model on GPU could outperform on CPU. GPU is better then CPU over memory

bandwidth and computational throughput (Figure 1.1).

Figure 1.1: Comparison between CPU and GPU on bandwidth (Nvidia, 2017)

Therefore, this project was based on gLM and also was designed on GPU. We

choose forward trie and Btree as the basic data structure, design a new data analysis

algorithm on CPU and a parallel traversal algorithm on GPU for querying. Besides, we

designed serials of experiments to test its performance and the results will be analyzed

in chapter 5.

1.1.3 Motivation evolution

Figure 1.2 shows the this thesis’s Pilgrimage. Initially, we are trying to improve

Neural Machine Translation (NMT) system (1), because the language is really a prob-
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Figure 1.2: This diagram shows the evolution of motivation.

lem for knowledge sharing all over the world and NMT system has showed its power

to help solving this problem. However, bilingual training data is hard to get, so the per-

formance of NMT system was hard to be improved especially for minority language

(Koehn and Haddow, 2012). Therefore, we turn to utilizing monolingual language (2).

The N-gram trained on target language can be integration into MODLMs (3) to im-

prove the neural language model, which affects NMT system. Therefore, we want to

build an efficient language model for MODLMs (4). GPU (5) is an accelerator to our

implementation and inspired by gLM (Bogoychev and Lopez, 2016).

1.2 Aim and objective

The aim of this project is to build an N-gram efficiently queryable language model

for MODLMs framework. Five sub-objectives are formulated to instructed the ad-

vancement of this project. This project is expected to improve MODLMs and related

applications which need neural language model, such as Neural machine translation.

• Preparation Firstly, understands the requirements of MODLMs. Then, make

a survey about the implementation of language model, and find a suitable data
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structure and algorithm for this project.

• Implement a forward trie Words are stored in forward trie in a natural left-to-

right order, so it is efficient to ask forward trie for a list of rightward extensions

given context.

• Design and implement a data analysis on CPU Because MODLMs need every

possible conditional probabilities for different n-gram order, it needs a special

algorithm to process input sentence to generate queryable sentence for GPU.

• Design and implement a query algorithm on GPU To return the all the pos-

sible conditional probabilities given a specific context, we need a new query

algorithm different from gLM’s.

• Compare giLM with gLM and make an evaluation In order to evaluate the

implementation and performance of this project, we design a serials of experi-

ments to compare giLM with existing GPU language model gLM, and make an

evaluation for giLM.

1.3 Achievements

This thesis presents a forward trie, a data analysis algorithm and query algorithm

to build an efficiently queryable language model for MODLMs framework. We also

design serials of experiment to compare the performance of giLM and discover the

points to be improved.

1.4 Outline

General purpose graphics processing units (GPUs) consists of thousands of smaller

than CPU’s cores designed for parallel tasks. In contrast, CPU consists of fewer cores

designed for sequential tasks. The comparison showed in Figure 2.2. Parallel comput-

ing is suited to GPUs and the application of it will improve the query speed of language

model, which is the main reason why it is coming to compete with CPU. The rest of

chapter 2 will describe the details of GPUs and parallel computing.

Because of the limited memory size in GPU, trie was chosen to be the data struc-

ture storing the language model. To do parallel searching and query, Bogoychev and
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Lopez (2016) skillfully combined Btree and reverse trie to do parallel search and back-

off computation. This thesis replaces reverse trie with forward trie because former

one is inefficient for our model (we do not do backoff computation). Chapter 3 con-

tributes the details about the methodology to implement language model design and

algorithms.

Chapter 4 depicts the experiments to test the performance of this project in or-

der to achieve the fifth sub-objective mentioned in section 1.2. We also raised four

hypotheses, which will be discussed in chapter 5.

Chapter 5 demonstrates the results of the experiments presented in chapter 4. For

each experiment, we analyze the results and presents a conclusion for these experi-

ments. Besides, it also mentioned the problems I encountered during this process and

suggested solutions for them.

In the end, chapter 6 summarizes and draws final conclusion of this project and

suggests ideas for the possible future work.





Chapter 2

Background

The world is your oyster. It is up to you to find the pearls.

—-The pursuit of happiness

2.1 Language Model

Models that assign a probability to a sentence is Language Model. It can be used to

measure how likely a sentence to be a natural sentence. Therefore, it is widely applied

in machine translation, speech recognition and natural language generation. Below is

its mathematic definition:

Given a sequence of words:

w1, ...,wl

where l is the number of words in this sentence, and wi is the ith word in this sentence.

The probability of it is:

P(w1, ...,wl)

The conditional probability is defined as:

P(wi|w1, ...,wi−1)

Therefore, the probability of a sequence of words can be defined as below using chain

rule:

P(w1, ...,wl) =
l

∏
i=1

P(wi|w1, ...,wi−1) (2.1)

7



8 Chapter 2. Background

2.1.1 N-gram language model

N-gram language model is the simplest language model under the application of

Markov assumption. As Markov assumption, the words are only related with a finite

number of preceding words. Let n−1 be this number, equation 2.1 can be transformed

to:

P(w1, ...,wl) =
l

∏
i=1

P(wi|wi−n+1, ...,wi−1) (2.2)

where n− 1 represents how many preceding words will be applied to generalize the

conditional probability.

For one of the conditional probability computations in equation 2.2, the equation

shows below:

P(wi|w1, ...,wi−1) = P(wi|wi−n+1, ...wi−1) = P(wi|wi−1
i−n+1) (2.3)

where wi−1
i−n+1 represents a word sequence from i−n+1 to i−1. Therefore, only n−1

words before wi affect the probability of wi.

2.1.2 Neural network language model

Neural network was presented (Bengio et al., 2003) to train language model. Usu-

ally, neural network contains a wordembedding layer, a few hidden layers and a soft-

max layer.

Take a one hidden layer neural network as an example. Given wi−1
i−n+1, it firstly

converts each word into vectors vi−1
i−n+1 on wordembedding layer. Then vi−1

i−n+1 will be

concatenated into an vector W , which represents all the information of wi−1
i−n+1. Then

this vector W will be fed into hidden layer to get a hidden state:

h = hiddenlayer(W,θ) (2.4)

where θ is the parameter in neural network. Finally, the probability vector will be

calculated by softmax layer.

p = so f tmax(h,θs) (2.5)

where h is transfered from hidden layer, θs is parameter in softmax layer.

2.2 MODLMs

MODLMs (Neubig and Dyer, 2016) is a framework which can be applied to im-

plement a Neural/n-gram Hybrid Model.
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Figure 2.1: Neural/n-gram hybrid LMs (Neubig and Dyer, 2016)

Figure 2.1 shows the function used to mixture two language model by performing

interpolation on softmax layer. In this function, λJ+N contains not only probabilities

of words, but also the mixture coefficients for the count-based n-gram model. λ is

the result of softmax in the output of neural language model. λJ+1... λJ+N is the

distribution over different Markov order P(pn(wi|wi−1, ...,w1)). λ1...J is the probability

distribution over vocabulary set containing J elements. d1,1...dJ,N is the data from

count-based N-gram language model for word J. Matrix 2.6 is what this framework

needs, so the elements in this matrix are also the return results of this project.
d1,1 · · · d1,N

d2,1 · · · d2,N
... . . . ...

dJ,1 · · · dJ,N

 (2.6)

MODLMs access the information both from n-gram LM and neural LM and it

allows neural network focus on the information not well captured by n-gram LMs.

Besides, it theoretical may need less training time and training data than normal neural

network because the training is based on a trained n-gram LM. Neubig performed

experiments on the Penn Treebank (PTB) dataset (Mikolov et al., 2010), and the first

100k sentences on the English side of the ASPEC corpus (Richardson et al., 2015),

taking a method called block dropout (Ammar et al., 2016) to avoid poor local minimal

value. The experiment results and comparison shows this hybrid LM achieve a big

improvement in perplexity over single n-gram models or LSTM neural language model

with block dropout. In this case, this framework can produce a more precise final

probability than the result of either language model inside it.
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2.3 GPU and Parallel computing

GPUs are constructed in a different way from CPUs to address parallel computing,

which decides the existing language model data structure designed for widely-used

x86 CPUs is not suited well for GPU.

2.3.1 GPU Construction

Figure 2.2: Constructions of CPU and GPU (Nvidia, 2017)

As Figure 2.2 shows, GPU has much more cores than CPU, and each core can exe-

cute single thread on one data element. An NVIDIA GPU consists of several ”Stream-

ing Multiprocessors” (SMs), each of which hosts several cores. Each SM executes the

same instruction at a time step. As Figure 2.4 shows, each thread has its own regis-

ter, and all the threads of in a block share one memory. Block is a software concept.

(Figure 2.3 shows more information about thread, block and grid)

Figure 2.3: This is a diagram showing the concept of grid, block and thread.

This entire picture (Figure 2.3) is a grid, where nine blocks in and each block has
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several threads. Computation on GPU is performed by kernel, which is similar to the

function in traditional C/C++ program. When the kernel is called, the size of grid and

block will be defined at the same time. The cores allocated to one kernel is an integer

multiple of warp, which is a hardware concept. If the demand of cores is less than a

warp, warp is still been assign but the rest of cores in a warp idle.

Table 2.1: The comparison of different memory in a general situation (Nvidia, 2017)

Memory type Latency Size

Register 0 4B

Shared 4-8 16KB-96KB

Global GPU memory 200-800 2GB-12GB

CPU memory 10K+ 16GB-1TB

Figure 2.4 presents the relationship between the memory and thread in GPU. And

Table 2.1 shows the size and latency of different memory. These information impli-

cates that to make sure the query speed needs as many queries happened on the memory

that has low latency as possible. However, the faster query memory has less size, so the

size of data structure should be small enough. Furthermore, we can not avoid access

data from Global GPU memory even though we can store the whole language model

on GPU (we did), so the coalesced read is important (Details in section 2.3.2.1).

Figure 2.4: GPU-memory (Nvidia, 2017)
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Figure 2.5: Warp-divergence (branch instruction)

2.3.2 Notes for GPU programming

Warp divergence As described in the previous section, every cores in a warp must

execute the same instruction. However, if there is branch instruction, only the part of

cores satisfies the condition will execute and rest of them idle. In Figure 2.5, at time =

1, all of the threads in a warp execute the instruction to make a comparison between x

and 0. At time = 2, only do thread 1,2,3 execute the instruction z = sqrt(x). At time =

3, only do thread 4,5,6 execute the instruction z = x2.

Therefore, Warp divergence brings extra loss of parallel efficiency (one more time

step than normal parallel computing), which is the thing we need to avoid in GPU

programming.

Coalesced reads This is a concept from CPU memory access. Because data read-

ing takes block as a basic unit on CPU, and all the data in one block will be read at

once. Therefore, we should try to store the relevant data in the same or adjacent block

to reduce access times. Similar to CPU, we also want to reduce the access times on

GPU global memory, so we try to access GPU global memory with coalesced reads.

If threads, which have a common shared memory, could request and fetch consecutive

data from GPU, then single access can satisfy all these threads. gLM (Bogoychev and

Lopez, 2016) utilized Btree to do this, so does this project.

2.4 gLM

gLM (Bogoychev and Lopez, 2016) is the first language model designed on GPU,

the results of its experiments showed it could outperform KenLM (Heafield, 2011)

when the expense of hardware is limited.
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2.4.1 Backoff computation

The computation of Backoff language model used in gLM is:

P(wi|wi−1,wi−2...wi−n+1) =

P̂(wi, ...wi−n+1) when P̂! = 0

P(wi|wi−1, ...wi−n+2)β(wi−1...wi−n+1) otherwise

where P̂ and β is two parameters stored in language model to compute the conditional

probability.

2.4.2 Reverse trie

Because of backoff computation, gLM (Bogoychev and Lopez, 2016) takes reverse

trie, a popular implementation for backoff computation, as the basic data structure to

store data read from language model in a reverse order. In gLM, there are two kinds of

arrays to construct trie:

• array K: store word

• array V: store value of associated word which has the same index with its value.

The value contains P̂, β and the address to the new array K of next word in trie.

Below is an example to explain reverse trie and the query process. Assuming the

query sentence is [A,B,C], for 5-ngram, then:

P(A,B,C) = P(C|A,B)P(B|A)P(A)1 (2.7)

Let us take the longest conditional probability of equation 2.7 as an example:

P(C|A,B) =


P̂(A,B,C) when P̂(A,B,C)! = 0

P̂(B,C)β(A,B) when P̂(A,B,C) = 0 and P̂(B,C)! = 0

P̂(C)β(B)β(A,B) when P̂(A,B,C) = P̂(A,B) = 0

(2.8)

Because the words are stored in a reverse order, if trigram A→ B→C stores in the

data set, then it will be stored in the form: C→ B→ A. Therefore, the query process

starts from C, then look for B and A. If A is not find, then fetch the P̂(B,C) from B,

1 We ignore the begin/end symbol to simplify the explanation for the entire thesis except where noted.

Let < s > be begin symbol, and < /s > be the end symbol. Then in actual situation, it should be:

P(< s >,A,B,C,< /s >) = P(< /s > |C,B,A,< s >)P(C|A,B,< s >)P(B|A,< s >)P(A|< s >)
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Figure 2.6: A reverse trie diagram for the example. This diagram only shows a single

trie from C to B to A in three situations. (1) is the first equation in equation 2.8. (2) is

the second equation in equation 2.8 . (3) is the third equation in equation 2.8.

Figure 2.7: This is an explanation for (2) in Figure 2.6. If there is no connection between

C→ B and A, which means there is no P̂(A,B,C) in this language model. So we take

P̂(B,C) from B. And then start from B in root (this is a new staring point, different from

B in C→ B) to looking for A and then get β(A,B)
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and go back to root then start from B to A to get β(A,B) (Equation 2.8-second answer

). If B is not find, then fetch the P̂(C) from C, and go back to root then start from

B to A to get β(B) and β(A,B) (Equation 2.8-third answer ). In this model, the first

traversal is to start from the C and look for B then A to get P̂(A,B,C) or P̂(B,C) (No A

found showed by Figure 2.6-(2)) or P̂(C) (No A or B found showed by Figure 2.6-(3)).

The second traversal is from B to look for A to get β(A,B) (Figure 2.7) or β(A,B) and

β(B)2. Therefore, reverse trie only needs twice traversals to get all the parameter to

calculate a conditional probability. (But reverse trie is not suited to our problem, which

will be discussed in chapter 3)

2.4.3 Btree and K-ary search

Figure 2.8: An example of Btree

Besides, gLM takes Btree (Bayer and McCreight, 2002) to do K-ary parallel search

(Schlegel et al., 2009; Kaufmann and Boston, 2011) for word searching in trie. Each

node in a full Btree has (k-1) elements and k child node. As Figure 2.8 shows, keys in

the kth child of a node are always larger than (k)th key and less than (k+ 1)th key in

that node 3.

To do K-ary search, similar to binary search, the comparison in Btree will be done

at the same time. For example, if we want to find a number 22, two threads will be

run to compare 22 with 20 and 30 at the same time. Then, we find the node where 22

2 If any elements in second traversal is not found, just return 0 as β

3 If the key is not number, then as long as the key can be sorted in an order, kth child of a node are always

at the right of (k)th key and at the left of (k+1)th key in that node (vice verse)
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is stored. Because data in one node of Btree are stored in consecutive memory, so we

can do coalesced read with it and also get a faster search speed with K-ary search.

In this project, we keep the basic idea about data structure construction of gLM.

2.4.4 Parallel computing platform

CUDA, introduced by NVIDIA in 2006, is a general-purpose parallel computing

platform and programming model designed for NVIDIA GPUs. The programming on

CUDA is similar to C/C++ programming but needs to regard the codes as a parallel

program. Besides, it provides some toolkits like Memcheck and Racecheck, both of

which help coder to find the problem in the CUDA code.

OpenCL, is a open standard framework maintained by the non-profit technology

consortium Khronos Group (Trevett, 2013). It offers a platforms for programmer to

program code run on GPU.

In this project, we choose CUDA as our parallel computing platform. Because

CUDA is more popular than OpenCL presently. Furthermore, CUDA was designed for

Nvidia GPU and both of them have been applied to do most of the machine learning

problem.



Chapter 3

Methodology

Man is not made for defeat. A man can be destroyed but not defeated

—-The Old Man and the Sea

To achieve the sub-objective 2, 3, 4 stated in chapter 1, this chapter describes the design

for this project. A overview of this project design is showed in Figure 3.1. We at first

analysis the problem that giLM aims to solve in details. Secondly, we explain the data

structure of giLM. Then, we present the query algorithm of giLM. Finally, we describe

the implementation of this project.

3.1 Problem Overview

According to the function in Figure 2.1 we explained in section 2.2, this function

needs the probabilities of all possible following words given context (matrix 2.6), in

which giLM will return all the elements for one query. Therefore, the query process

for giLM can be modeled below:

• Input sentence: w1,w2, ...wl (Can be expressed as: wl
1)

• Output: P(wi = X |wi−1
i−n+1) for all n ∈ {1...N}, all i ∈ {1...l}. In this case, X

represents every possible word in the language model and N is the order of N-

gram. The outputs will contain all the elements in matrix 2.6, which can be

written as matrix 3.1:

17
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Figure 3.1: The overview of the project design


P(w1) · · · P(w1|wi−1

i−N+1)

P(w2) · · · P(w2|wi−1
i−N+1)

... . . . ...

P(wl) · · · P(wl|wi−1
i−N+1)

 (3.1)

For an existing language, gLM:

• Input sentence: w1,w1,w2, ...wl (Can be expressed as: wl
1)

• Output: P(wl
1), the probability of query sentence.

According to the analysis above, gLM only returns one probability of a query sentence.

However, this is not what we want. This project is designed to output all the elements in

matrix 3.1 for the function showed in Figure 2.1. With the requirements of MODLMs

in mind, we design the data structure and query algorithm for giLM.

3.2 Data structure

After reading and making survey about existing data structure used to implement

language model, this project is based on gLM (Bogoychev and Lopez, 2016), and takes

forward trie and Btree to build the language model. With our talk in section 3.1, this

problem needs a list of rightward extensions given context and forward trie is suited

to solve this problem. The rest parts of this section will discusses forward trie and the

data structure used by this project.
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3.2.1 Forward trie

Different the reverse trie used by gLM (Figure 2.6), forward trie takes a reverse

order compared with reverse trie (Figure3.2).

Figure 3.2: The comparison between forward trie and reverse trie taking an example

data set = A,B,C. We ignore the value of them to save space.

As Figure 3.2 shows, if we want to return P(X |A,B) (here X represents A,B,C),

the things we need to do is find A firstly, and then find B. After that, return all the

child nodes of B. However, for reverse trie, we need to go through three trie to get the

P(X |A,B). If the data set is very large (the data set used in chapter 4 contains more

than 100 thousand different words), we have to go through more than 100 tries. But

for forward trie, we only need to go through once and return the child nodes of B. If

we do not find the word we are querying, just return 0, which will be talked in section

3.3.

As we talked above, forward trie can return a list of rightward word given context

and it has been used by IRSTLM (Federico et al., 2008), so we choose forward trie as

our basic data structure.

3.2.2 Terms used in this chapter

Here are some terms used in this chapter.

• Trie: the whole data structure is a trie.

• Btree trie: a node of trie except root of trie. And if we extract one Btree trie, it

will show in form of Figure 3.5

• Btree trie level: the level in one Btree trie
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• Trie level: the level in trie regardless of Btree.

• VocabID: A number as the representation of word in language model 1.

3.2.3 Data structure of this language model

The design of this language model showed in Figure 3.3: The unigram is stored in

root node, and 2-gram is stored in the child node of root and so on. Figure 3.4 showed

the data layout in trie. Similar to gLM, there are two arrays to store the language

model.

K[index] = word (3.2)

V [index] = value (3.3)

The reason why we store backoff here is to make comparison relatively fair, the details

of which will be described in experiment for comparison with gLM.

For unigram, we store word into an array K. Then the index of array K is the

associated vocabID of that word. Then the value of this word will be stored into an

array indexed by vocabID. So equations 3.2 and 3.3 can be written for root node as

follows.

K[vocabID] = word (3.4)

V [vocabID] = value (3.5)

Because we will transfer the words in query sentences into associated vocabIDs in

terms of equation 3.4, the probability of one word (P(wi)in equation 3.1) can be re-

trieved directly by equation 3.5. Therefore, the query algorithm which will be talked

in next two sections just for conditional probabilities.

Apart from root trie node, every child node of trie is a Btree, called Btree trie here.

As Figure 3.5 shows, each number in the figure is the index of word and also the index

of value. As long as we find the word, then the value of this word can be retrieved.

The data used to construct language model are known in advance, so they can be

sorted in advance. Therefore, the construction algorithm can build the entire trie in a

sorted order and the Btree to be in the form showed in the diagram.

1 Word’s vocabID is equal to the associated index of array in root trie node as equation 3.2.
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Figure 3.3: The overview of the data structure, each node in the diagram is a Btree

showed in Figure 3.5 except root node. This figure is inspired by (Bogoychev and

Lopez, 2016).

Figure 3.4: The design of trie with a example

Figure 3.5: This is a diagram for Btree trie when K = 5. The entire Btree is a node of

trie showed in Figure 3.3. This figure is inspired by (Bogoychev and Lopez, 2016)
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3.3 Query

As we talked in section 3.1, the form of the output for one query takes this form:

P(wi|wi−1
i−n+1) =

P(wi|wi−1
i−n+1) wi

i−n+1 is stored in language model

0 otherwise

According to the experiments performed by Neubig and Dyer (2016), the n-gram

used in this framework is smoothed by Kneser-Ney (Kneser and Ney, 1995). In fact,

neural language model could handle the information not captured by N-gram language

model. Therefore, even though we do not process the zero probability in N-gram

language model, this framework is still able to work.

For unigram probability, we do not need to query on GPU because it is stored into

an array and can be fetched directly on CPU. The details will be discussed in section

3.4.

3.3.1 Input data analysis

Before we perform query, we need to read input sentence and transfer it into an

appropriate form. From input sentence wl
1, We fetch pieces wi−1

i−n+1, called queryable

sentences here2. After that, we copy the language model and queryable sentences from

CPU to GPU.

3.3.2 Query on GPU

Before this section, all of the steps mentioned above happened on CPU. After ac-

cepting the data from CPU, then we do query on GPU. The process of single query is

divided into two steps:

• Search the queryable sentence

• Return all the probabilities stored in a trie node for one query

These two steps are described as follows. Let N be the largest order of language model.

2 The reason why we do it is to take advantages of GPU. Each queryable sentence will be processed by

one block. The details of how a block works on a queryable sentence will be discussed in section 3.3.2.1

and section 3.4.4.1
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3.3.2.1 Search the queryable sentence

Let us take one queryable sentence, wi−1
i−N+1, as an example.

When N = 2, then the query sentence is wi−1. All the data that users want are

stored in the root trie, which store all possible words. Array K stores the words, and

an associated array V stores the payloads of that word. For example, if we want to

retrieve word: wi−1 = like, we seek like in array K. Assume K[j]=like, then V[j] is the

information we want. This process does not need parallel searching because the array

A can be indexed in fixed time.

When N > 2, the first step is the same as previous one described in the last para-

graph. After getting the first word wi−N+1, the payloads of wi−N+1 offers the address

to next trie level. This address leads us to a child node of trie, called Btree trie, which

is exact an address to a root Btree node. After that, we do K-ary search in Btree trie to

find wi−N+2. If it can be found, then fetch the address to next trie level. Otherwise, 0

will be returned and no Btree trie return. This is a recursive process until find all the

words in the queryable sentence.

3.3.2.2 Return all the probabilities stored in a trie node (Btree trie)

After finding wi−1
i−N+1 in last section, we get the address to next trie level, where

all wi and their associated values are stored in a Btree trie. We perform a preorder

traversal algorithm here to go through all the data stored in Btree trie.

Different from last section, we do not need to search anything, the only thing we

need to do here is to fetch the data, which we need, stored in this Btree trie and write

them into an result array. At first, we fetch all the information we need from the root

node of Btree trie by multi-threads at the same time. Then, each thread is responsible

for one sub-Btree trie to do preorder traversal. The details will be showed in next

section. After traversal done, we copy that result array from GPU to CPU.

3.4 Implementation

With the conceptual description in previous sections, this section will go deep and

describe a complete procedure of querying on this language model in details.
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3.4.1 Read and store language model on CPU

This is the first step to read a language model into our designed data structure.

Because we need to store these data into our data structure, the following content will

be related to memory operation and address calculation.

• For unigram, we store the values of words at address = f (vocabID), where f 3 is

a function to calculate the address where store the value of word. Therefore, we

do not need to store the actual words, which save the space for words. Since we

have a map between word and vocabID, we can just store word using associated

vocabID to save space and the address to word’s value can be calculated by f 4.

• For bigram, the vocabID of second word will be stored in the child nodes of root

trie. The layout of them is showed in Figure 3.6. The data layout in child node is

slightly different from root node. The Figure 3.6 presents two different layouts

of a Btree trie. For root node of this Btree trie or inner node of Btree trie, the

first part, which shows in many numbers only, in the diagram represents the

vocabIDs. Offset5 to Btree trie child of each node follows the first part. After

these, there are payloads of the words stored in this level. Payloads consists of

address of next trie level, probability and backoff. For the leaf node, there is

no offset because they have no child in this Btree. For the last level trie, there

are only probability and backoff but no address to next trie level or backoff.

Therefore, there are two different trie node layouts except root trie, two different

Btree trie node layouts, and 4 kinds of layouts in total. We fetch the data from

data structure in four different functions, f1, f2, f3, f4, which are similar to each

other but changes a little in terms of layout.

– Let f1 be the function to calculate the last Btree trie in the last trie node(the

highest trie and it is the leaf Btree trie node). The way to calculate the value

address is skip all the vocabIDs and skip previous vocabIDs’ value. The

second grid from in Figure 3.6 shows this process. The values only contains

probability. Because the size of vocabID or value need to be defined in

program, so we just explain the concept.

3 Function we used is (vocabID-1)*3 here. The value on these three address are: address to next trie level,

probability and backoff (total 3 values).
4 vocabID is a number for 4 bytes but the length of word is various, which may be very long.
5 Which used to calculate the address to its Btree trie child based on current address
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– Let f2 be the function to calculate a inner node in Btree trie in the last trie

node. The way to calculate the value address is skip all the vocabIDs, off-
sets and skip previous vocabIDs’ value. The values only contains proba-

bility.

– Let f3 be the function to calculate the last node in Btree trie but not in

the last trie node. The way to calculate the value address is skip all the
vocabIDs and skip previous vocabIDs’ value. The value, different f1,

contains address to next trie level, probability and backoff.

– Let f4 be the function to calculate a inner node in Btree trie but not in

the last trie node. The way to calculate the value address is skip all the
vocabIDs, offsets and skip previous vocabIDs’ value. The value contains

address to next trie level, probability and backoff.

 This is an example for Btree root/inner node  

 13  17  35  47  56  61  66   

 10  12   15  

 19  20  24  27  

 41  45  

 53  

 57  60   63  

 67  74  78  81  Payload(67) ... Payload(81) /*Note:This is an example for Btree leaf node*/

/*This is the following elements in the first node*/ FirstchildOffset OffsetTochild(13) ... OffsetTochild(66) Sizeofchild(66) Payload(13) ... Payload(66)

Figure 3.6: The layout of a Btree trie, which is a general node in trie. The bottom grids

are the following elements of the first node, drawn like this for layout. The data in a

Btree trie are arranged in a form showed in the bottom grid (the leaf node has no offset

to child). The reason why we just store offset but not address is to save space. This

figure is inspired by (Bogoychev and Lopez, 2016)

• For higher order gram, the store is the same as bigram. Only the highest gram

does have no offset to next Btree level and no backoff parameter.

After that, the words stored in it will be mapped to a number, called vocabID. This

language model will participant the next step to make queryable sentences.

3.4.2 Transfer input sentences on CPU

The original input sentences, w1,w2, ...wl , can not be used directly to perform query

on GPU. We fetch the pieces wi−1
i−n+1 for all i ∈ (1...l) and all n ∈ (2...N) from them as

the condition for the conditional probability P(wi|wi−1
i−N+1) in function 3.1, where N is
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greater than 2 6. When GPU take wi−1
i−N+1, it will assign a block for each one queryable

sentence in wi−1
i−N+1. Besides, we have to replace the actual word with a number called

vocabID in terms of the root trie in language model we built in last section. vocabID

will be used to find the associated value in data structure. This process happens on

CPU.

3.4.3 Copy data from CPU to GPU

After we having data structure (section 3.4.1) and queryable sentence (section

3.4.2), we need to allocate the memory of GPU for all the data that we will copy

from CPU to GPU. One important thing is we have to copy a pointer pointing to an

address to store the query results from CPU to GPU and set the memory allocated to

results to be zero because GPU will not initialize the value for second query 7. Finally,

we copy the language model and queryable sentences from CPU to GPU and perform

query.

3.4.4 Query on GPU

After accepting the data from CPU, we do query on GPU. The process of query

was described in section 3.3. Let N be the highest order of language model. When

we run the program on GPU, it will call kernel to execute the commend. Meanwhile,

we have to assign appropriate size of Grid size and Block size. The size of grid can

be simply regarded as the number of blocks in one grid. Similarly, the size of block

can be regarded as the number of threads in one block. These assignment of these two

numbers is showed in 3.1.

Grid size Block size

num ngram queries max num children

Table 3.1: The value of Gridsize and blocksize. The max ngram queries is the total

number of queryable sentences. The max num children, which has been set building

the language model, is the max number of child nodes in Btree trie

Let us take one queryable sentence, w1
2, as an example to begin the journey of

querying on GPU.
6 Because if N < 2, there is no probability for bigram or other following word
7 If we do not do this, the second query may return the results of last query because GPU will not erase

the value even though we free them.
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3.4.4.1 Parallel search the query sentence

At first, we will fetch the value of w1 from root tire.As we described in section

3.3.2.1, this process does not need parallel searching because the array V can be in-

dexed in fixed time by vocabID.

Then, the payloads of w1 contains the address to a child trie node of w1, where w2

stores. Because this trie node is actually a Btree trie in the form of Figure 3.5, vocabID

of w2 will be one of these number. Then, all of the threads i will work at the same

time to get all the vocabIDs in root Btree trie node. Similar to binary search, after all

threads finding vocabID[i], K-ary search is making comparison with the vocabID[w2].

If vocabID[w2] = vocabID[i], then fetch the address to next trie level. If vocabID[w2]

> vocabID[i], fetch the address to next Btree trie level which is located in the left of

vocabID[i]. If vocabID[w2] < vocabID[i], fetch the address to next Btree trie level

which is located in the right of vocabID[i]. This is a recursive process until find all the

words in the query sentence. Whenever the word is not find in trie, we will not forward

to next step and just end this query. Zero is the default answer for this situation 8.

3.4.4.2 Return an entire node of trie (Btree trie)

This is a process run by threads in one block. After finding the last word in the

query sentence, then we have got the address to next trie level from wi−1
i−N+1. To get

P(wi = X |wi−1
i−N+1), the next step is to return the whole node of trie, because all the

words following wi−1
i−N+1 are stored in this node.

This process is divided into two steps in terms of requirements. The first step is to

fetch all the vocabID, and associated probabilities stored in root (Red part in Figure

3.7). Then store all the probabilities into results indexed by F(blockIdx.x,vocabIDs).
9. The second step is to fetch the offset stored in root Btree trie. If the offset is not

zero, then we can find the child Btree trie node. Each thread will be responsible for

the return of a subBtree trie (Different color represents different thread in Figure 3.7

)10. And then for each subtree trie, the thread will traversal the whole subBtree trie

8 Since we can not find w1 or w2, it is impossible to find a word following w1,w2, so the probability of it

is zero.
9 F(blockIdx.x, vocabIDs) = (blockIdx.x*number of unigram) + vocabIDs. Each block is responsible

for one queryable sentence, so the data stored in results array will be start with bigram conditional

probabilities, then trigram ...: P(X |wi−1),P(X |wi−1,wi−2),...,P(X |wi−1
i−N+1) for all i ∈ (1, ...l). Where X

represents all the possible words
10 The number of threads is equal to the max number of Btree trie children nodes
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Figure 3.7: The root Btree trie will be processed by all the threads (max num children-

1 exactly), and the children of this root Btree trie will be assigned to different threads.

This picture is inspired by a tutorial designed for parallel course (Weeden and Royal,

2017)

and return the values.

The traversal Algorithms can be included using the commands as shown in algo-

rithm 1.

Algorithm 1 Traversal algorithm
1: procedure SUBBTREE TRIE TRAVERSAL(address to Btree trie node)

2: if address to Btree trie node !=0 then
3:

4: for i = 1, i++, while i <size of Btree trie node do
5: result[F(blockIdx.x, vocabIDs[i])]=value(vocabID[i])

6: address to Btree trie node[i]=address to child(vocabID[i])

7:

8:

9: for i = 1, i++, while i < max number of children do
10: subBtree trie Traversal(address to Btree trie node[i])

11:

3.4.4.3 Batch queries

As we described in previous section, there will be different n-gram queries made

on CPU in terms of the query sentence. One block is responsible for one queryable

sentence. Batch queries will be run by many blocks on GPU. Simplify the process,

no matter how many sentences are inputted, we just have many queryable sentences

after the input sentences are transferred. When the number of queries reaching a point,

then this process will utilize all the compute power of GPU, which is called saturating

GPU. The experiments to saturate GPU run in section 4 will need batch queries.
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Experiments

Get busy living, Or get busy dying.

—-The Shawshank Redemption

To achieve the sub-objective 5 mentioned in chapter 1, this chapter describe the experi-

ments designed to test the performance of giLM. The experiments are divided into two

main parts. The first part was designed to test whether the results are correct and the

same as what we expected form (section 3.1). The second part was designed to test the

performance of giLM including query speed and the robust to the different language

model data set. Because there is no existing language model designed for the same

purpose of giLM, we compare it with an GPU language model, gLM. The results and

analyses are in the next chapter.

4.1 Resource and environment

4.1.1 Environment

Table 4.1: The experiment environment

GPU Tesla K80

Programming language C++

Platform NVIDIA CUDA8.0

Operation system Ubuntu 16.4

We did the experiments on a VM instance installed 16.04.2 LTS system on Google

Cloud Platform. This VM instance is assigned a NVIDIA Tesla K80, the most popular

29
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Figure 4.1: A glance of europarl.lm.1. The form of data is: P̂, words, β

GPU to build data center and also a major accelerator for all major Deep Learning

frameworks 1.

4.1.2 Dataset

Except where noted, we use europarl.lm.1 (Figure 4.1 shows a piece of this file), a

5-gram language model (used by gLM to do test) 2 to saturating the GPU. It is 3.3G

and contains more than 88.7 million n-grams where the number of unigram is 101359.

Furthermore, we made three small different ngram language models whose order

are 3, 4, 5 respectfully taking a piece of Europarl v7 3 with the help of KenLM toolkit.

We also make the comparison between different model size by using europarl.lm.1 and

a 5-gram model containing 23120 n-gram (1350 unigrams), which was one of the three

small different ngram language models made by myself.

4.2 Correctness

The output of this model is a big result array where all the possible conditional

probabilities in matrix 3.1 store in. Because the unigram probability can be accessed

1 http://www.nvidia.com/object/tesla-k80.html
2 http://www.statmt.org/moses/RELEASE-3.0/models/fr-en/lm/europarl.lm.1
3 http://www.statmt.org/wmt14/translation-task.html#download
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directly, the probability of unigram is not contained in this model. The layout in results

array is showed below:

For example: given input sentence is wl
1, then:

results[P(wi = X |wi−1)︸ ︷︷ ︸
For all i ∈ (1...l)

, P(wi = X |wi−1,wi−2)︸ ︷︷ ︸
For all i ∈ (1...l)

,...,P(wi = X |wi−1
i−N+1)︸ ︷︷ ︸

For all i ∈ (1...l)

]

To verify whether the results are correct, we sample a few query sentences from

website and Europarl v7, and query them on giLM. To verify the results, we checked

them by hand one by one.

4.3 Performance test

To test the performance of giLM, we designed a series of experiments and made

comparison with gLM, the first GPU language model. Because gLM has a computation

cost of backoff computation, which is not required in our implementation. However, to

make this experiment fairer, We modify our implementation giLM to be a giLM with

a simulated backoff computation4 in order to reduce the effect of unfair factor. All the

giLM performed in experiments is with backoff computation except where noted.

The B-tree node size is 31 which is a default setting in gLM. The metrics used in

this test shows below:

• Throughput Throughput (N-gram queries per second) was used in gLM’s paper

to measure the query speed, excluding the cost of initializing and copying data

structure, and moving data between GPU and CPU.

• Throughput output Throughput output (number of output per second) is very

similar to throughput but using output numbers per second as a measurement.

• Cost-effective(CE) We presented a metric called Cost-effective(CE). Because

these two GPU language model return different results for different purposes,

we need to compare them by measuring how much we have to spend to reach a

common goal using these two GPU language models respectfully. The cost here

includes the cost of initializing queries and moving data between GPU and CPU.

This part of experiments is to test the performance of giLM including query speed

and the robustness to the different language model data set. Therefore, according to the

implementation of giLM and experiments did by gLM, we presented six hypotheses:
4 Whenever we query a sentence which is not find in model, instead of ending search directly, we perform

another search from root node to do second search and also fetch β, which add an extra cost
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1. For batch query (many input sentences under saturating the GPU), gLM should

outperform giLM according to throughput (N-gram queries per second).

2. For batch query (many input sentences under saturating the GPU), giLM should

outperform gLM according to throughput output (number of output per second).

3. For and batch query (many input sentences under saturating the GPU), giLM

should outperform gLM according to Cost-effective(CE).

4. The backoff computation in giLM should not affect the performance of giLM

because most of the time cost should be on traversal process.

5. The effect of N-gram order and language model size on giLM should be similar

to gLM because they have similar data structure (giLM replaces reverse trie in

gLM with forward trie)

6. The process writing data to result data in GPU global memory will take up the

main query time because the GPU global memory access is very expensive (Ta-

ble 2.1).

Based on the hypotheses mentioned above, we design the following experiments to

verify these hypotheses.

4.3.1 Saturating the GPU

To compare the performance between two GPU language models, we should make

the comparison under the situation in which both of them are saturating GPU, because

they have different GPU utilization rate even though the input query sentences are

same. Therefore, we gradually increase the number of query sentences, and then make

use of them to do investigation. Finally, the variation tendency of throughout is shown

in Figure 5.1 and Figure 5.2 in next chapter.

When these two language models are saturating the GPU, they get the best perfor-

mance they could achieve on the same hardware. Then we analysis the results of their

best performance to verify the hypotheses 1,2,3.

To verify the hypothesis 4, we perform a pure giLM without backoff to see the

effect of backoff computation.
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4.3.2 Effect of N-gram order and language model size on perfor-

mance

To explore the effect of N-gram order of language model and the effect of language

model size, we perform the experiments saturating the GPU on different N-gram order

language models. Besides, one of it is 5-gram order and it is smaller than the data set

used in last experiment, so we can compare it with the experiment results get from

last experiment. Because giLM is based on gLM, and the data structure of them are

very similar, giLM is expected to have similar variation tendency when we change the

language model.

4.3.3 Runtime experiment for each step in Query

This was designed for hypothesis 6. As we talked in chapter 3, there are two steps

in Query process:

• Search the queryable sentence

• Return all the probabilities stored in trie node

For second step, we at first fetch data from data structure and then write the data we

fetched from data structure into result array. However, result array is allocated to GPU

global memory, so the write operation will needs much time according to Table 2.1.

Therefore, these three steps are responsible for the main time cost. We want to explore

the time cost of each step to know which step is the one we need to optimize at first.

To do this, we modify the code of giLM:

• Only search the queryable sentence

• Only fetch all the probabilities stored in trie node but not write them into result

array

• Normal one.

The results of this experiment will be discussed in chapter 5.





Chapter 5

Results and Evaluation

It always seems impossible until it’s done.

—-Nelson Mandela

With the two experiments in mind, we analysis their results in this chapter. We dis-

cussed the hypotheses mentioned in last section.

5.1 The analysis of Correctness

As we talked about in chapter 4. The probabilities returned by giLM are same with

the values stored in language model for each query.

results[P(wi = X |wi−1)︸ ︷︷ ︸
For all i ∈ (1...l)

, P(wi = X |wi−1,wi−2)︸ ︷︷ ︸
For all i ∈ (1...l)

,...,P(wi = X |wi−1
i−N+1)︸ ︷︷ ︸

For all i ∈ (1...l)

]

(5.1)

Compare the output showed in equation 5.1 with matrix 3.1, we find all the el-

ements in matrix we need can be found in this results array apart form the unigram

probabilities1. Therefore, This project can satisfy the requirements of MODLMs.

However, because of the limited time, we did not test the results automatically by

program, which will be a future work to do.
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Table 5.1: Throughput comparison (N-gram queries per second) between gLM, giLM

and giLM without backoff computation.

Europarl.lm.1 small(5-gram)

giLM 0.36M 27.90M

gLM 13.08M 21.45M

giLM-without backoff 0.35M 38.56M

5.2 The analysis of performance test

Because gLM has an backoff computation model, we measure query speed with or

without the extra backoff computation in giLM. Therefore, we gradually increase the

number of query sentences, and then make use of them to do investigation. Finally, the

variation tendency of throughout is shown in Figure 5.1 and Figure 5.2.

Figure 5.1: Throughput against various number of sentences for gLM.

With the hypotheses raised in last chapter, we analysis them one by one according

to the results of experiments.
1 The unigram probability can be fetched directly from language model without GPU. It was talked in

section 3.3.2.1
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Figure 5.2: Throughput against various number of sentences for giLM.

Table 5.2: How to get throughput output(number of output per second) of gLM and giLM

using Throughput (N-gram queries per second). Let s be the number of unigram in the

language model

giLM Throughput output(giLM)=Throughput(giLM)*s

gLM Throughput output(gLM)=Throughput(gLM)

For batch query (many input sentences under saturating the GPU), gLM should
outperform giLM according to throughput (N-gram queries per second).

The Figure 5.2 depicts giLM saturating the GPU when the query sentences is more

than 50. Throughput of giLM stay at 0.36M and keep relatively steady or even slightly

lower, which may be caused by the complexity of query sentence which increase the

cost of search on GPU, as the increasing size of query beyond this point. In contrast,

the throughput of gLM (Figure 5.1) reach the peak when query sentences are more than

10K. From these two graphs and Table 5.1, throughput of gLM is bigger than giLM

when both of them saturating the GPU. However, giLM can get a better throughput

than gLM’s on small language model. This is different from our hypothesis.

We already analyzed the query process of gLM and giLM. One possible reason

giLM outperform than gLM in terms of throughput is there is little data to be fetched,
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so the time cost in traversal is so little that giLM outperforms gLM. Another possible

reason is that the simulated backoff computation in giLM is not enough to make up

the cost of backoff computation in gLM though it really works (Table 5.1 and this part

will be discussed later again).

If we change to another angel, size of output, to analyze this phenomenon. Because

of the limited GPU memory, where the results are stored in, throughput output of

language model will be limited too (the results has to be allocated by GPU memory).

According to table 5.2, the throughput of giLM should be less than gLM when the

throughput output is given. However, this conclusion is based on the throughput only

affected by throughput output. Apart from the different effect of GPU memory on

gLM and giLM, the data processed by them, the searching process and the computation

(giLM only has a simulated computation), are not the same. The only conclusion can

be draw here is when both of gLM and giLM saturate the GPU, if the throughputs of

them can be get, then we can know the relationship between throughput outputs of

them.

Though we have many speculating, We still can not make a clear conclusion for the

comparison between gLM and giLM over throughput. Therefore, the first hypothesis

false.

For batch query (many input sentences under saturating the GPU), giLM
should outperform gLM according to throughput output (number of output per
second).

According to table 5.2, we can get:

throughput output(giLM) = 0.36M*101359 = 3648.92M for europarl.lm.l

throughput output(gLM) = 13.08M for europarl.lm.l

throughput output(giLM) = 27.90M*1350 = 37665M for small(5-gram)

throughput output(gLM) = 24.45M for small(5-gram)

From the computation results showed above, the giLM takes absolute predominance

both on two data sets on throughput output. Therefore, the second hypothesis is veri-

fied to be correct.

For and batch query (many input sentences under saturating the GPU), giLM
should outperform gLM according to Cost-effective(CE).

Let us take CE as our matrix. In terms of the problem analysis in section 3, we

need an array of number where all the conditional probabilities store. For gLM, firstly,

it returns only one number which is not what we want. Secondly, even though we

modify the source code of gLM to return a number of separate conditional probabilities
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P(wi|wi−1, ...,wi−N+1), it just return (q-1) results, which is far smaller than the results

of giLM.

For example in this experiment (s=101359):

0.36M ∗101359 = 3648.92M

To get the same size of results as giLM, for gLM,

3648.92M/13.08M = 278.97.

The computation above shows the actual return of giLM is 3648.92M, but gLM

is only 13.08M. To achieve the same results, gLM needs to spend 278.91 times the

time than giLM even ignoring the other cost like we mentioned in next paragraph.

Therefore, in this condition, giLM is far better than gLM.

For gLM, it does not have the ability to initialize queries for the problem in section

3 so we need to prepare special query sentence or modify the source code of gLM to

do the same thing. And for giLM to return s results, it only need to copy one query

from CPU to GPU, but gLM needs to do s times.

The results on small dataset shows similar results to the big dataset.

Therefore the third hypothesis can be verified to be correct.

The backoff computation in giLM should not affect the performance of giLM
because most of the time cost should be on traversal process

We delete the backoff computation model in giLM to observe the pure model not

for performance comparison. We hypothesized giLM-without backoff should be bet-

ter than giLM. We observe it has no advantage on big language model (The result is

slightly worse than giLM because of different initialization of data structure, this is an

adaptively error) but outperform gLM on small language model. This may be due to

the cost of backoff computation in giLM can be ignored on big language model, where

most of the cost of giLM afforded by the traversal described in section 3.4.4.2. Another

reason is due to the B-stump (Bogoychev and Lopez, 2016), more than 88% N-gram

(where N > 2) only have a root Btree trie if the K is appropriate, which means mostly

only one parallel search will fetch all the data we need. Therefore, when the dataset is

very small, most of trie node will be B-stump, which is a possible reason why giLM

perform so good on small dataset.

Therefore, the forth hypothesis not totally correct, it depends on the size of lan-

guage model.
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The effect of N-gram order and language model size on giLM should be sim-
ilar to gLM because they have similar data structure (giLM replaces reverse trie
in gLM with forward trie)

Table 5.3: Throughput comparison (N-gram queries per second) of giLM on different

n-gram language models

5 4 3

Europarl.lm.1 0.36M 0.27M 0.18M

small language model 2 30.00M 28.38M 22.70M

• Order of N-gram language model Bogoychev and Lopez (2016) offered their

conclusion and the paper says the throughput of gLM will increase along with

the decrease of n-gram. However, giLM has a opposite results with gLM (Figure

5.3). At first, we thought it may be affected by the model size, so we did the same

experiment on small dataset and the results are showed in Table 5.3. Therefore,

the decrease of throughput is not because of the language model size. Theoret-

ically, lower order leads less queryable sentence, the query time should be less.

However, the results of experiment is different from theoretical the guess. This

will be a future work to analyze.

• Different language model size Table 5.1 and Table 5.3 shows that the effect of

model size has a more effect on giLM than gLM. Because as the increasing of

language model size, giLM and gLM both bothered by the increasing complexity

of vocabulary search and associated computation. However, giLM has an extra

traversal for the vocabularies whose number is equal to the number of words in

unigram and has to copy all of the data (size is the number of unigram) to CPU.

Therefore, model size influences giLM more than gLM on throughput. And

along with the increase of model size, the throughput will decrease.

The process writing data to result data in GPU global memory will take up the
main query time because the GPU global memory access is very expensive (Table
2.1).

As Table 5.4 shows, for big language model, the traversal process slow the process

from only search by 96% for big data, 87% for small data. And the write data process

also slow the process from no write by 95% for big data,33% for small data.
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Table 5.4: Throughput comparison for different Query step

only search no write normal

Europarl.lm.1 200.24M 7.95M 0.36M

small language model 353.65M 45.25M 30.00M

From the computation above, the traversal process accounts for much time of the

whole query process. The process to write data into GPU global memory is relatively

less serious than traversal. This may be due to the there is not too much data stored

in language model need to be fetched and return. This conclusion can be ensure by

the comparison between big data set and small one. Because small data structure store

less data, and the requirement to write data into result array is less than big one, write

process accounts for time cost on big dataset more than on small one. In contrast, the

traversal process accounts for a similar percent both on two data set.

Therefore, the hypothesis 6 is not right. Traversal accounts for most time cost.

However, if we do not execute data writing, the limitation of GPU global memory

will disappear because no write operation on GPU global memory. Then the query

throughput can be double times than no write, but it is not useful in our project.

5.3 Summary

5.3.1 The verification of hypotheses

The hypotheses raised in chapter 4 have been talked in this chapter. Hypothesis 2

and 3 are verified to be correct. Hypothesis 1 can not be ensure by this experiment.

The validity of hypothesis 4 depends on the size of language model. And hypothesis 5

have to be discussed into two parts: one of them false but another one is partly correct

(the size has more effect on giLM than on gLM). Hypothesis 6 is wrong but we can

get the information about time cost of each query step from this experiment, which

inspires us which part should to be optimized.

5.3.2 Evaluation to experiments

• The design of experiment is not comprehensive to evaluate giLM. Because there

is no existing implementation for MODLMs, we need to make a implementation
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to be reference. This problem can be solve by modifying gLM to return the same

results and compare performance of two different implementations.

• We only can know giLM can satisfy the requirements of MODLMs, but the

information get from experiment for performance is not enough.

5.3.3 Problems and suggested solutions

Problem 1 The first experiment for correctness has been done and checked by

hand. It is not convenient and not enough to test all the possible situation.

Solution 1 Potential solution to this problem is write program to run this test auto-

matically including the query sentence sampling and the results verifying.

Problem 2 Because the limited memory of GPU, the query file is also limited by

it. If the query file is too big, there will be memory error.

Solution 2 There could be a program on CPU which can split the query file auto-

matically according to the condition of GPU.
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Conclusion and Future work

Hope is being able to see there is light despite all of the darkness

—-Desmond Tutu

6.1 Conclusion

This thesis firstly introduced a language model framework, MODLMs (Neubig and

Dyer, 2016), and the first GPU language model gLM (Bogoychev and Lopez, 2016).

Based on the implementation of gLM, this thesis contributes:

• A forward trie

• A data analysis algorithm on CPU

• A parallel traversal algorithm on GPU

Finally, it builds a queryable language model on GPU for MODLMs. From the re-

sults of experiments, giLM can satisfy the requirements of MODLMs. Compared with

existing GPU language model, it outperforms over the requirements of MODLMs.

This project is expected to contribute a efficient queryable language model on GPU

for MODLMs and as a foundation to improve the applications where MODLMs can

be applied, such as neural machine translation.

6.2 Potential future works

Due to the time constraint, there are still too many things can be explored in this

project:
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• As we talked in chapter 5, there are some problems in the experiments. The

potential solutions could be executed in the future.

• Because the result is allocated on GPU global memory. The writing operation

to it (section 3.4.2) is inefficient especially when Btree trie is very deep. This

could be a point to improve the performance of giLM

• Since giLM is a foundation of MODLMs, integrating giLM into MODLMs will

be a future work. After that, we can try to compare the original MODLMs and

giLM-MODLMs and the other applications of it.

• Because we do not need to do the backoff calculation, we do not need to store

them into our data structure. If we omit the store of backoff parameter, the size

of data structure can be smaller.

• As the experiment shows, traversal accounts for most time cost. Because the

existing implementation in giLM is recursive function, which is inefficient. This

part could be improved in the foreseeable future.

• Since there is no existing language model designed for MODLMs, we could

modify the code of gLM to let it produce the same results as giLM. Then we can

compare the performance between two GPU language model, both of which can

do the same thing.
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